Codimension one symplectic foliations and regular Poisson structures

نویسنده

  • Ana Rita Pires
چکیده

In this short note we give a complete characterization of a certain class of compact corank one Poisson manifolds, those equipped with a closed one-form defining the symplectic foliation and a closed two-form extending the symplectic form on each leaf. If such a manifold has a compact leaf, then all the leaves are compact, and furthermore the manifold is a mapping torus of a compact leaf. These manifolds and their regular Poisson structures admit an extension as the critical hypersurface of a Poisson b-manifold as we will see in [GMP].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S ep 2 01 0 CODIMENSION ONE SYMPLECTIC FOLIATIONS AND REGULAR POISSON STRUCTURES

In this short note we give a complete characterization of a certain class of compact corank one Poisson manifolds, those equipped with a closed one-form defining the symplectic foliation and a closed two-form extending the symplectic form on each leaf. If such a manifold has a compact leaf, then all the leaves are compact, and furthermore the manifold is a mapping torus of a compact leaf. These...

متن کامل

The modular class of a regular Poisson manifold and the Reeb invariant of its symplectic foliation

1 We show that, for any regular Poisson manifold, there is an injective natural linear map from the first leafwise cohomology space into the first Poisson cohomology space which maps the Reeb class of the symplectic foliation to the modular class of the Poisson manifold. The Riemannian interpretation of those classes will permit us to show that a regular Poisson manifold whose symplectic foliat...

متن کامل

Codimension One Symplectic Foliations

We define the concept of symplectic foliation on a symplectic manifold and provide a method of constructing many examples, by using asymptotically holomorphic techniques.

متن کامل

Riemann Poisson Manifolds and Kähler-riemann Foliations

1 Riemann Poisson manifolds were introduced by the author in [1] and studied in more details in [2]. Kähler-Riemann foliations form an interesting subset of the Riemannian foliations with remarkable properties ( see [3]). In this paper we will show that to give a regular Riemann Poisson structure on a manifold M is equivalent to to give a Kähler-Riemann foliation on M such that the leafwise sym...

متن کامل

Prevalence of Non-lipschitz Anosov Foliations

We give sharp regularity results for the invariant subbundles of hyperbolic dynamical systems and give open dense sets of codimension one systems where this regularity is not exceeded as well as open dense sets of symplectic, geodesic, and codimension one systems where the analogous regularity results of [PSW] are optimal. We produce open sets of symplectic Anosov diffeomorphisms and flows with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011